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Abstract
Small RNA RNA-seq for microRNAs (miRNAs) is a rapidly developing field where opportu-

nities still exist to create better bioinformatics tools to process these large datasets and gen-

erate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to

process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment

approach, whereby reads are sequentially aligned against customized mature miRNA, hair-

pin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the

level of raw reads in addition to reads per million (RPM). Reads for all other RNA species

(tRNA, rRNA, snoRNA, mRNA) are provided, which is useful for identifying potential con-

taminants and optimizing small RNA purification strategies. miRge was designed to opti-

mally identify miRNA isomiRs and employs an entropy based statistical measurement to

identify differential production of isomiRs. This allowed us to identify decreasing entropy in

isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that

pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a

head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench,

omiRAs, miRDeep2, Chimira, UEA small RNAWorkbench), miRge was faster (4 to 32-fold)

and was among the top-two methods in maximally aligning miRNAs reads per sample.

Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simulta-

neously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated anal-

ysis of miRNA expression across all samples. As miRge was designed for analysis of single

as well as multiple samples, miRge is an ideal tool for high and low-throughput users.

miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.

PLOS ONE | DOI:10.1371/journal.pone.0143066 November 16, 2015 1 / 16

OPEN ACCESS

Citation: Baras AS, Mitchell CJ, Myers JR, Gupta S,
Weng L-C, Ashton JM, et al. (2015) miRge - A
Multiplexed Method of Processing Small RNA-Seq
Data to Determine MicroRNA Entropy. PLoS ONE 10
(11): e0143066. doi:10.1371/journal.pone.0143066

Editor:Wei Yan, University of Nevada School of
Medicine, UNITED STATES

Received: July 30, 2015

Accepted: October 30, 2015

Published: November 16, 2015

Copyright: © 2015 Baras et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All RNA-seq data sets
are available through the sequence read archive
(SRA - http://www.ncbi.nlm.nih.gov/sra) using the
accession numbers described in the methods section
of the manuscript. Additional library data for miRge
can be located at http://atlas.pathology.jhu.edu/baras/
miRge.html.

Funding: This work was supported by the American
Heart Association (13GRNT16420015 to MKH,
https://research.americanheart.org). The funders had
no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

http://atlas.pathology.jhu.edu/baras/miRge.html
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0143066&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/sra
http://atlas.pathology.jhu.edu/baras/miRge.html
http://atlas.pathology.jhu.edu/baras/miRge.html
https://research.americanheart.org


Introduction
MicroRNAs (miRNAs) are short (17–24 bp) RNA species that regulate translation across most
species [1]. Identifying, characterizing and quantifying miRNAs has been an active area of
research for a decade and has culminated in the creation of miRBase, a repository of known
miRNAs [2]. The current version of miRBase (v21) contains 35,828 mature miRNA products
across 223 species and is particularly rich in miRNA sequences from humans and model
organisms such as mouse and rat. High-throughput profiling of miRNAs in biologic samples
has historically been performed by qRT-PCR and hybridization arrays [3]. However, the popu-
larity of RNA sequencing (RNA-seq) for miRNA profiling has risen as the cost of sequencing
has decreased. RNA-seq is ideal as it allows the characterization of all known and unknown
miRNAs, including isomiR forms, from a given RNA source. This advantage is tempered by
the need for significantly more starting material than is necessary for qRT-PCR based
approaches. A variety of RNA-seq computational tools exist, each with certain advantages and
limitations, without consensus on an optimal method. This has created an opportunity for a
new generation of fast and accurate tools to quantitate, annotate, and summarize the resulting
data of each miRNA species from a sequencing run [3]. In particular, as more miRNA RNA-
seq data is reported, there has become a greater appreciation of isomiRs and the need to iden-
tify them in RNA-seq datasets [4].

Some features of miRNAs make their characterization from RNA-seq data easier than char-
acterizing mRNA RNA-seq data. The major feature of miRNA RNA-seq that can be taken
advantage of is the shorter read length of the miRNA (19-23bp) relative to the sequencing
reads length (35–50 bp). This reduces quantitation to the enumeration of the unique nucleotide
sequence elements present, which is in contrast to mRNA or genomic next generation sequenc-
ing (NGS) analytic approaches (Fig 1). A second feature of miRNA RNA-seq that we take
advantage of is the relatively limited number of miRNAs described in any one species. In
Homo sapiens, miRBase v21 lists 2,588 unique miRNAs. We and others have found most sam-
ples only contain up to ~350 reasonably expressed miRNAs [5–9]. This greatly simplifies the
identification of RNA species relative to explaining the expression of>10,000 mRNAs. The
analysis of mRNA must also consider gene length when normalizing to reads per kilobase of
exon per million mapped reads (RPKM) or fragments per kilobase of exon per million mapped
reads (FPKM) [10]. In contrast, miRNAs are essentially the same length, making a reads per
million miRNA reads (RPM) value a simpler way to normalize the sequencing data.

MicroRNA RNA-seq data also has unique challenges, including the presence of isomiRs.
IsomiRs are a collection of miRNA length and sequence variants due to imperfect editing by
Dicer and RNA editing enzymes [11,12]. Imperfect Dicer editing can add additional hairpin
nucleotides or reduce the length of the miRNA, most commonly on the 3’ end. Multiple nucle-
otides, predominately adenosines adenosine and uracil, can be added with preference to the 3’
end by RNA editing enzymes. These events result in hundreds of isomiRs for many miRNAs
[12]. Because miRNAs are only 19–21 bp in length their sequences are likely to have higher
alignment identity to random sequences, compared to mRNAs, found throughout the genome.
This makes their proper assignment based on alignment to the entirety of the genome difficult
and inaccurate with spurious alignments occurring in non-transcribed regions. This is particu-
larly true for tools that align to the genome and have loose alignment parameters to allow iso-
miR assignments.

miRNAs also have a complex evolutionary background in which over 50 hairpin precursor
miRNAs are found in two or more loci in the human genome. These loci produce identical
mature miRNAs but often have variable nucleotides adjacent to the mature sequence. Addi-
tionally, many miRNAs are in families that result from duplications in which only a nucleotide
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or two are altered. For example, hsa-miR-107 and hsa-miR-103a-3p differ only at the 22nd
nucleotide. This makes it challenging to disambiguate a sequence that is< 22 nucleotides in
length and matches these two miRNAs equally.

miRNA entropy can be utilized to explain the diversity of isomiRs resultant from variable
processing and imperfect editing. The spectrum of miRNA species that can result from the pro-
cessing of a pre-miRNA can be interpreted in the information theoretic notion of entropy in
which greater entropy would suggest more order to the system [13]. However, an accurate
assessment of entropy is dependent upon reliable accounting of miRNA isomiR species.

Many groups have developed tools to characterize miRNAs by RNA-seq. These tools take
short RNA-seq data from a variety of sources, output it in tabular or visual forms, and solve for
the miRNAs contained therein. Numerous approaches utilizing a variety of database and align-
ment processes have been created [14–17]. These methods have not necessarily reconciled the
unique nature of miRNAs to their alignment strategies. These samples are enriched for RNA
species between 19 and 24 base pairs, and thus primarily represent miRNAs and their isoforms.
Therefore, random genomic sequences which may be equivalent or better matches than iso-
miRs are overweighted in alignments to the genome and lead to underrepresentation of miR-
NAs. Additionally, the tools that do not align to the genome, but rather all RNAs, also do not
give appropriate treatment to miRNA such as correcting for known miRNA SNPs. Moreover,
all of these tools will deem any miRNA as valid, even if every aligned sequence is a non-canoni-
cal isomiR with one or more nucleotide changes. While complete RNA editing can occur, it has
yet to be shown in a miRNA [18].

We aimed to improve upon existing tools with a highly parallelized, efficient, and rational
analytic pipeline designed to accurately characterize short RNA-seq data with the goal of

Fig 1. The benefits of collapsing reads in short RNA-seq data. Collapsing identical reads is advantageous for miRNAs because the species length (17-
24bp) is less than the sequence length (50 bp). Collapsing is not advantageous for mRNAs or DNA.

doi:10.1371/journal.pone.0143066.g001
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optimally capturing isomiRs to generate a comprehensive overview of miRNA expression. We
herein describe miRge, a program designed to quantify miRNAs and other RNA species from
small RNA-seq datasets obtained from modern sequencing systems. We provide head to head
comparisons of miRge against other software tools to demonstrate its superiority in speed and
miRNA assignment. We also demonstrate how miRge identified differential expression of iso-
miRs during stem cell maturation.

Materials and Methods

Bioinformatics sequence databases and software dependencies
Mature miRNA and miRNA hairpin libraries were obtained from mirBase.org (2). Human
(Homo sapiens), mouse (Mus musculus), rat (Rattus norvegicus), fruitfly (Drosophila melanoga-
ster), nematode (Caenorhabditis elegans) and zebrafish (Danio rerio) mRNA and other non-
coding RNA libraries were obtained from Ensembl (www.ensembl.org/), unless otherwise
denoted. Human tRNAs were obtained from the Genomic tRNA Database [19]. Human
snoRNA was obtained from the snoRNABase (www-snorna.biotoul.fr/). miRge uses Cutadapt
(https://github.com/marcelm/cutadapt) to trim linker sequences and perform sequence quality
filtering [20]. Bowtie 1.1.1 (http://bowtie-bio.sourceforge.net/) is used to align reads to known
sequence libraries [21].

Search library preparation
miRge requires the use of four libraries: mature miRNA, hairpin miRNA, mRNA and other
noncoding RNA (ncRNA). To optimize the alignment of miRNAs in miRge, several sequence
libraries were modified. All mature miRNA sequences were brought up to a minimum of 25
nucleotides (useful for Bowtie alignment) by adding additional genome-accurate bases to the 5’
or 3’ ends. Generally two 5’ and six 3’ nucleotides were added to each miRNA. Additionally, 22
miRNAs that had identical sequence (or perfect complementarity) to another miRNA were
removed from the human miRNA library (S1 File). Another 26 near-identical families were
designated to be merged upon final reporting (S2 File). This was repeated in the mouse, rat,
fruitfly, nematode and zebrafish with 15, 7, 4, 4 and 16 near-identical families that were merged
upon final reporting (S3–S7 Files). Finally, all validated SNPs located in the mature regions of
the human and mouse miRNA, as described in the microRNASNPdb, were added as additional
searchable miRNA sequences to both human and mouse miRNA libraries [22].

Two records were removed from the human Ensembl cDNA database file
(ENST00000244333 and ENST00000332503) as they contained the miRNAs hsa-miR-151a
and hsa-miR-10a. From the mouse noncoding RNA fasta file obtained from Ensembl, all
known miRNA records and an additional 14 records that contained miRNA sequences were
removed (S8 File). All search libraries (mature miRNA, hairpin, coding RNA, and noncoding
RNA) were made into Bowtie libraries using the bowtie-build command [21].

miRge was built to allow users to provide their own 4 respective reference annotations for
sequence alignment to any species of interest. An additional automated script, miRge-build,
will generate the appropriate bowtie libraries from user inputs for incorporation into miRge.

miRgeWorkflow
miRge was designed to establish an efficient method of quantitation and a sequential method
of annotation via sequence alignment. It is threaded, and thus can take advantage of available
multi-CPU architecture during sample processing. miRge is comprised of three major steps:
quantitation, sequential alignment, and data filtering along with organization (Fig 2). The
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quantitation begins with the raw fastq/fastq.gz files which are processed by Cutadapt to per-
form sequence quality filtering, sequence length filtering, and to remove sequencing linkers
present [20]. The quantitation is then completed by tabulating the counts of all unique nucleo-
tide sequences returned by Cutadapt identified across the set of samples. This set is then col-
lapsed into a table of all unique reads and the number of each read by sample. Because
miRNAs all have a length distribution of 16–25 bp, we begin the alignment pipeline with a
“stringent” alignment to mature miRNA sequences for sequence elements� 25 bps in length
using Bowtie, allowing only identical matches of length 16–25 base pairs. Remaining
unmatched nucleotide sequences are then aligned using Bowtie to the full hairpin miRNA for
sequence elements> 25 base pairs in length. Remaining unmatched nucleotide sequences are
then aligned to other noncoding RNA sequences including tRNA, snoRNA, and rRNA, allow-
ing for a single nucleotide difference. Remaining unmatched nucleotide sequences are then
aligned to coding RNA sequences (EST) allowing only for identical matches. In the last step to
identify isomiRs, the remaining unmatched nucleotide sequences are again aligned to known
miRNAs but in a less stringent manner to identify isomiRs, in which the first nucleotide and
the last 3 nucleotides are ignored and up to 3 misaligned base pairs are allowed. This rational,
step-wise alignment strategy for miRNA identification allows for a more accurate identification
of isomiRs. This is because we adopt a triaged approach, where alternative alignments to

Fig 2. miRge: multi-sample quantization of unique sequences followed by a single sequential annotationmethod for miRNA-seq analysis. First,
sequencing data undergoes a quality control and length filtering step. Sequences are trimmed of adaptors (optional) and unique sequences are quantitated
per sample. The unique sequences identified across all samples examined then undergo 5 separate alignment steps against 4 libraries using Bowtie. Only
reads > 25 bp are aligned to the hairpin miRNAs. The resulting data is organized and miRge outputs several files including a final miRNA oriented data table
in both absolute counts and RPM.

doi:10.1371/journal.pone.0143066.g002
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various RNA species are excluded prior to a sequence being classified as an isomiR. Resulting
alignments are then further filtered by requiring miRNA species to contain at least 2 reads
from the “stringent”miRNA alignment step. This is based on the assumption that miRNAs do
not exist in a purely “edited” form without canonical sequence or canonical sequence length
variants present. Finally, miRge generates summary reports, which contain: 1) a file containing
all aligned sequences with each row representing a unique nucleotide sequence; 2) a file con-
taining all unaligned sequences with each row representing a unique nucleotide sequence (with
the option to separate this file by sample identity); 3) a file containing reads summed per
miRNA in which near identical miRNAs are also merged together (i.e. miR-103b/ miR-107,
and miRNA SNPs); 4) a file as in 3 reported as RPM; 5) an optional file reporting miRNA
entropy and % canonical reads per miRNA; 6) an optional file on the entropy of each isomir
across samples and 7) an html file containing an annotation log of the unique sequences identi-
fied across the entirety of the sample set analyzed along with per sample information on total
reads, sequence length histograms, and the composition of the sample with respect to miRNA,
mRNA, ncRNA, genomic, and unaligned reads.

Hardware
miRge, miRExpress (2.0), miRDeep2, and the UEA small RNAWorkbench v3.2 were installed
and run on a workstation with Dual Intel Xeon E5645 2.40GHz CPUs an ASUS Z8PE-D18
motherboard and 24GiB memory running Ubuntu 12.04 LTS. miRExpress was run with stan-
dard settings utilizing 5 processing cores. miRge was run utilizing 5 processing cores on the
above system and was additionally run on a Dell Optiplex 9020 workstation with an Intel i7-
4770 3.4GHz processor and 16 GiB of RAM running Ubuntu 14 LTS utilizing 6 of the process-
ing cores. The UEA small RNAWorkbench v3.2 was run using 24 processing cores with the set-
tings of 16 bp minimum length, 30 bp maximum length, minimum abundance 1, 2
mismatches allowed, aligning the genome and to miRBase v21, keeping only the best match
and grouping mismatches. sRNAbench was run directly from the webserver to allow 2 mis-
matches, a seed length of 17, and a minimum read count of 2. omiRAs was run directly from
the webserver with standard settings and a dummy second sample. Chimira was run directly
from the webserver with adapter trimming and alignment analysis using standard settings. As
the comparisons were designed to find known miRNAs, no novel miRNA discovery was per-
formed in miRDeep2 and processing time was halted for sRNAbench before novel miRNA
discovery.

Evaluated data sets
For speed and alignment tests, we evaluated 103 short RNA-seq Illumina datasets obtained
from the Sequence Read Archive (SRA). These were human adipose tissue (SRR772341-
SRR772349; SRR772351-SRR772440; SRR77563), human beta cells (SRR873410), the miRQC
study sample A (SRR950876) and a mouse liver sample (SRR947057) [9,23–25]. For miRNA
entropy tests, we evaluated 16 files from SRA. These were normal pancreas and pancreatic can-
cer (ERR852089—ERR852099), and embryonic stem cells (ESC) maturing to retinal pigment
epithelium (RPE) (SRR493011-SRR493015) [26,27].

Statistical testing and correlation between datasets
We used the miRQC study sample A (SRR950876) as a benchmark to compare the 7 methods
for miRNA identification. These data were compared to the data reported in the miRQC paper
for the Illumina reads [23]. After identifying known miRNAs using each method, we
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performed Pearson correlations based on 333 shared miRNAs each with a minimum read
count of 10 across all samples using R (version 3.1.1).

The entropy of a given miRNA was calculated as −
Pn

i¼1 pilog2ðpiÞ where n represents the
number of unique miRNA species with read counts�2 from a given miRNA “family” and pi
represents the proportion of the reads mapping to a given miRNA “family” that are accounted
for by a unique miRNA species with read counts�2. Different miRNA “families” can have a
different total number of unique miRNA species (n). Therefore, the entropy as calculated
above was normalized by the maximal possible entropy log2(n) resulting in a normalized
entropy scaled between 0 and 1. The assessment of normalized entropy was limited to miRNA
“families” for which the most abundant unique species had a RPM of> 20 in order to allow for
enough data points to support this calculation. Normalized entropy values across different
samples were compared with Spearman correlations and Kolmogorov-Smirnov tests. The
probability density function for normalized entropy within a sample was generated by kernel
density estimation using a normal kernel with bandwidth 0.15. All statistical tests were per-
formed using MATLAB 8.4 R2014b.

Results

miRge run time and results
We performed tests on miRge to profile its performance on small and large datasets. On a 2.37
million read (SRR772563) file of human adipose tissue small RNAs, miRge completed its anal-
ysis in 25 seconds (Table 1). This resulted in the discovery of 2.04 million miRNA reads repre-
senting 86% of all reads in the original sample size. Only 40,876 reads (2%) remained
unaligned at the end of the analysis run, with other reads assigned exclusively to hairpins
(1,373), mRNAs (5,302), and other RNAs (rRNAs, snoRNAs, tRNA pieces) (158,601).

We then performed miRge on a larger human beta cell sample (SRR873410) containing
33.23 million reads. This sample was processed in 5 minutes and we obtained 26.17 million
miRNA reads (Table 1).

To evaluate miRge on a non-human source, we analyzed a mouse heart dataset
(SRR402445) containing 15.98 million reads. This was processed in 2.6 minutes obtaining 8.78
million miRNA reads. Nearly 1.8 million reads were removed during the prealignment steps of
linker removal, QC and collapsing reads. Combined rRNA, snoRNA and tRNAs accounted for
2,211,257 reads. mRNAs (98,602) and hairpin reads (4,482) were also captured. There were 1.2
million unaligned reads, of which> 500,000 reads were of a single 42 bp sequence that failed
to align to the mouse genome (blastn search to RefSeq Genomic DNA).

Finally, to demonstrate the extreme multiplexing ability of miRge, we evaluated multiple
RNA-seq files at once. We obtained 100 human adipose tissue small RNA-seq fastq files
(SRR772341-SRR772349; SRR772351-SRR772440; SRR77563) with a combined 199,827,852
reads from SRA. These were processed through miRge in one batch, taking 52 minutes to com-
plete. Filtering removed 27.5 million reads. Of the remaining ~172 million reads, we identified
151,196,677 miRNA reads (88% of all reads) from the QC and length filtered run.

Comparisons with other methods
We compared miRge output to other well-described methods of miRNA analysis (Table 1).
Because most miRNA analysis tools do not allow for multiple files at upload, we ran all samples
independently. For the 2.4 million read human adipose tissue sample, miRExpress completed
the run in 90 seconds, Chimira in 2 minutes and the UEA small RNAWorkbench in 3.6 min-
utes. sRNABench, the improved version of the popular miRAnalyzer, completed the run in 7
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minutes followed by miRDeep2 and omiRAs logging in at 13.5 and 14 minutes respectively.
miRge identified more miRNAs in the sample than any of the other method except Chimira
(Table 1). miRExpress (which does not identify RNA-edited isomiRs) identified almost
500,000 fewer reads. The number of miRNAs with a read count of 10+ RPM varied between
methods (189–278, median 240).

In the 33.2 million read beta cell data set, miRge performed significantly faster than the
other methods and again identified the second most miRNA reads. While miRge processed the
reads in 4.5 minutes, the other methods ranged from 21–62 minutes (Table 1). miRge was also
the fastest method (2.7 minutes) for a 16 million read mouse heart data set (SRR402445) and
again found more miRNAs than every other method except Chimira. miRge was consistently 4
to 28-fold faster than all other methods. The 100 adipose tissue sample could not be compared
to the other tools as none of them are capable of that level of multiplexing.

Table 1. Profiling andmiRNA assignment across 5 methods in 3 separate samples.

Human Adipose Tissue (SRR772563)

Method Processing time miRNA Reads miRNAs miRNAs >10 RPM

miRge 26 sec 2,041,334 479 245

miRExpress 2.0 3.5 min 1,503,704 593 240

omiRAs 14 min 1,672,612 458 238

miRDeep2 13.5 min 1,969,122 432 189

sRNAbench 7 min 1,916,307 969 278

Chimira 2 min 2,044,664 804 268

UEA small RNA Workbench 3.6 min 1,583,013 578 225

Human Beta Cell (SRR873410)

Method Processing time miRNA Reads miRNAs miRNAs >10 RPM

miRge 5.2 min 26,169,405 884 306

miRExpress 2.0 62 min 16,386,290 878 260

omiRAs 55 min 25,823,397 804 288

miRDeep2 39.5 min 19,949,196 489 196

sRNAbench 21 min 23,755,866 598 276

Chimira 24.4 min 26,238,680 1,499 323

UEA small RNA Workbencha

Mouse Heart (SRR402445)

Method Processing time miRNA Reads miRNAs miRNAs >10 RPM

miRge 2.7 min 8,783,714 519 274

miRExpress 2.0 22.7 min 6,939,148 742 247

omiRAs 16 min 8,298,256 525 254

miRDeep2 13 min 6,336,341 529 216

sRNAbench 13 min 7,696,386 927 294

Chimira 10.2 min 8,839,153 893 265

UEA small RNA Workbench 9 min 4,497,946 583 226

Starting read counts: SRR772563 = 2,373,604 reads; SRR873410 = 33,233,648 reads; SRR9402445 = 15,981,680 reads. Each method was run with the

number of processing cores reported: miRge—5 cores; miRExpress 2.0–5 cores; omiRAs—5 cores; miRDeep2–1 core; sRNAbench—unknown; Chimira

—unknown; UEA small RNA Workbench—24 cores. Bold indicates fastest time and most miRNA reads.
a unable to complete due to memory limitations.

doi:10.1371/journal.pone.0143066.t001
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Correlation between miRNA discovery methods
To determine if the superior speed and miRNA discovery of miRge resulted in an unusual
selection of miRNAs discovered, we evaluated identifications of known miRNAs from the
miRQC study sample A (SRR950876) using each of the 7 miRNA alignment tools. We com-
pared these miRNA read counts to the Illumina method results provided in the miRQC manu-
script [23]. By Pearson correlation we observed strong correlations between all of the methods
(0.87–1.00) with only miRExpress and the UEA small RNAWorkbench being outliers (Fig 3).
These data indicate that miRge is consistent in reporting known miRNAs despite finding more
miRNA reads than most other methods.

Comparing miRge alignments to unique libraries versus the genome
Because we have proposed that aligning to individual RNA libraries is a better approach than
aligning to the genome, we investigated how these alternative methods would affect isomiR dis-
covery. For this experiment, we altered miRge to align directly to the genome (hg19) using our
sequential “stringent” and “loose” searches. We performed miRge on the 33 million read
human beta cell sample (SRR873410). In comparison to aligning to libraries, when aligning to
the genome, we aligned more reads (28.7 vs. 25.9 million reads); however, the number of reads
aligned to miRNAs was much lower (5.23 vs 7.82 million reads). When considering the num-
ber of isomiRs identified, for miRNAs with at least 100 reads we observed the median of

Fig 3. Comparisons across 8 methods of miRNA identification. The miRQC sample A RNA-seq Illumina
data set was analyzed by 7 methods and compared to the original data. For each method, a histogram is
given of log2 normalized miRNA read counts for 333 shared miRNAs. Pearson correlation was performed for
each comparison and a scatter plot with loess curve is presented.

doi:10.1371/journal.pone.0143066.g003
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isomiRs to be 110 in the standard miRge run but only 54 in the miRge run aligned to the
genome. Thus, there was a 2 fold increase in isomiRs using the standard miRge approach.

Characterization of the spectrum of miRNA entropy with respect to the
biological degree of differentiation
We evaluated the extent to which the normalized entropy measure, as defined in our methods,
was effected by the inclusion of unique miRNA species supported by only 1 read, i.e. singletons.
At this low level of abundance we cannot distinguish whether these reads represent editing
events or sequencing errors. Furthermore, we found that the inclusion of singletons signifi-
cantly inflated the normalized entropy distribution towards higher disorder, as might have
been expected (S9 Fig). Based on these findings, we limited the calculation of normalized
entropy to include unique miRNA species with read counts of at least 2.

We then postulated that normalized miRNA entropy may vary from more primitive states
to more mature states. To test this, we compared the entropy of ESCs that were matured into
RPEs over 30 days and compared them to RPE cells in culture for>3 months [27]. We noted a
consistent decrease in entropy (i.e. increase in order) over the maturation of the samples,
Spearman correlation coefficient 0.14, p<0.001) (Fig 4A). Given that it has been postulated
that some malignancies may represent a “de-differentiated” state, we next compared six pan-
creatic adenocarcinoma samples to 5 normal pancreas samples [26]. Consistent with the data
from the above cell line studies, the fully differentiated benign adult pancreatic tissue samples
exhibited a high degree of “order.”However, in contrast to the maturation series in Fig 4A, we
did not observe a significant difference when comparing the miRNA entropy spectrums across
normal vs cancer tissues, Kolmogorov-Smirnov p>0.05 (Fig 4B), suggesting that this phenom-
enon is not effected by malignant transformation in these tissues

Discussion

The rationale of miRge
In creating miRge, we rationalized the ideal workflow for small RNA-seq analysis, then con-
structed the workflow from a new coding framework and a few established tools. Our workflow
begins with the understanding that small RNA-seq samples that use the Illumina TruSeq Small
RNA kit are size selected to capture only ~15–35 base RNA species. Thus, this sample should
not generally contain genomic DNA or longer RNAs (mRNAs, lncRNAs, etc.) and there is a
strong bias in the RNA sample for miRNAs. We demonstrated that when extensive miRNA
libraries are known for a species, it is a better strategy to align to the library rather than the
entire genome to maximize isomiR discovery. Aligning small RNA-seq sequences to the entire
genome, where it may align in multiple coding and non-coding areas with equal probability,
resulted in fewer proper miRNA assignments, likely due to isomiRs aligning to locations in the
genome with a higher identity than to the mature miRNA locus.

The first decision in our workflow was to incorporate a step that collapses identical reads as
has been done in miRDeep2, miRExpress, sRNAbench and other programs [14–17] (Table 2).
Due to the shorter length of a miRNA (<26bp) relative to a read length (35-50bp), most short
RNA-seq runs, composed predominately of miRNAs, will collapse to<10% of the original
size. Where we have taken a different approach is first tabulating the counts for the unique
sequences identified across a set of samples examined and only then annotating the set of
unique sequences identified with respect to miRNA, mRNA, genomic, or other nucleotide
sequences. To the best of our knowledge, this algorithmic approach is considerably more com-
putationally efficient for RNA-seq data analyses than any prior software tools and scales well
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for larger data sets and multiplexed data sets. It is expected that the majority of sequence ele-
ments will be found to some extent across most samples of a given dataset. Therefore, it is
highly redundant and inefficient to perform alignments on the unique sequence elements iden-
tified from each sample independently. Additionally, large sequencing facilities could consider
storing the annotation results of all unique sequence elements encountered to further optimize
computational efficiency.

The annotation pipeline is designed to be a rational approach to the characterization of the
considerable diversity of RNA-seq reads including miRNA/isomiRs, mRNA, noncoding RNA,
and genomic contaminants. Utilizing a “stringent” first pass through all RNA species and a
“loose” second pass through all RNA species allowed us to optimally identify isomiRs, as demon-
strated by miRge's higher alignment counts than most other miRNA alignment tools. Addition-
ally, we adjusted the miRBase miRNA reference file, adding two 5’ bases and up to six 3’ bases
from the hairpin to each mature miRNA. This was to capture the entirety of length variants in
miRNAs in the first step and is akin to other programs such as Chimira that align directly to the

Fig 4. The spectrum of miRNA entropy. Kernel density estimates of the distribution of normalized miRNA entropy in two sample sets. A) As embryonic
stem cells (ESCs) differentiate towards retinal pigment epithelial cells (RPE) the distribution of miRNA entropy is shifted towards more order (Spearman
correlation coefficient 0.14, p>0.001). B)No significant difference in the distribution of miRNA entropy with respect to normal pancreas vs pancreatic
adenocarcinoma is observed (Kolmogorov-Smirnov test p > 0.05).

doi:10.1371/journal.pone.0143066.g004
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hairpin sequence. Known, validated SNPs were also included, as we discovered that a central
SNP in the potentially highly expressed hsa-miR-28-3p significantly impacted its read counts in
the presence of heterozygosity using other aligners. We reasoned SNP variants could impact on
read counts for all miRNAs in miRge, due to the stringent alignment parameters.

Another unique feature of miRge is that it requires that all reported miRNAs have at least
two alignments that match the canonical or length adjusted sequence (i.e. no RNA-editing or
sequencing errors). Thus, we use the first “stringent” alignment to the miRNA library to obtain
a list of all allowable miRNAs in a given sample and then expand the counts of each. Other
miRNA bioinformatics tools report miRNAs that do not have any canonical reads, which fre-
quently skew miRNA read results. The combined effect of our approach is to maximize the
capture of true miRNAs and minimize false assignments due to sequencing errors.

miRge is most similar to the new miRNA tool Chimira. Chimira, based on the earlier Kra-
ken tool, is web-based, has a very simple to use graphical user interface, internal analysis tools,
and attractive graphics [28,29]. The two methods were comparable in miRNA calling having a
pairwise value of 1.00 (Fig 3). Chimira identified more miRNAs due to two methodological dif-
ferences. The first is that miRge reports any miRNAs>25bp and having up to 1 mismatch as a
separate miRNA hairpin read. These are included in mature miRNAs reads in Chimira. Sec-
ondly, the “stringent” first step of miRge avoids any reads that do not have a canonical
sequence. Chimira, and all other tools, do not have this step which resulted in it identifying
some non-miRNAs as miRNAs. Another useful tool is sRNAbench, which is in the sRNAtool-
box [30]. It is also web-based, provides comprehensive analysis of the data, and performs new
miRNA discovery. While miRge is the fastest tool, with unique features including the ability to
determine miRNA entropy, there are other competing tools that also have appealing features.

Table 2. A comparison of commonmiRNA alignment methods.

Method

miRge sRNAbench omiRAs miRDeep2 miRExpress Chimira UEA small RNA
Workbench

Map to Modified
libraries

Genome or libraries Genome Genome or
libraries

Hairpin Hairpin Genome and/or
mature

Input Fastq,
Fastq.gz

Fastq, Fastq.gz, sraa,
read counta, Fastaa

Fastq,
Fastq.gz

Fastq Fastq Fastq.gz,
Fasta.gz

Fastq

Process multiple
files

Yes No Yes
(�2GB)

No No Yes (�2GB
each)

Yes

Identify novel
miRNAs

No Yes Yes Yes No No Yes

Identify other RNA
species

Yes Yes Yes Yes No No No

Allows RNA edited
IsomiRs

Yes Yes Yes Yes No Yes Yes

Incorporates
miRNA SNPs

Yes No No No No No No

Visual outputs Yes Yes Yes Yes Yes Yes No

Format Stand-alone Web based / Stand-
alone

Web based Stand-alone Stand-alone Web based Stand-alone

Alignment Tool Bowtie Bowtie Bowtie Bowtie Smith-Waterman
algorithmb

BLASTn PatMaN

a Executable version only.
b Smith-Waterman algorithm implemented following Single Instruction Multiple Data (SIMD) instructions

doi:10.1371/journal.pone.0143066.t002
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We specifically avoided using the Rfam database for other RNA alignments as is used in
miRDeep2 [31]. Rfam is a collection of RNA families represented by multiple sequence align-
ments, consensus secondary structures and covariance models. Although Rfam is a useful data-
base for a variety of purposes, it unfortunately has a known problem with tRNAs, in which
their database is both incomplete and has<40% accuracy to validated human tRNAs. This
causes any alignment tool that uses Rfam, instead of a specific tRNA library, to significantly
underrepresent this common RNA species in small RNA-seq data and potentially misassign
other reads.

miRNA entropy
miRge is the first alignment tool to actively determine miRNA entropy for the user. We used
that function to demonstrate that entropy moves toward order as cells go from a more primi-
tive state (ESC) to a mature cell type (RPE). This provides a hint that a cell’s RNA-editing may
change over time and may reflect alterations in Dicer activity or other editing proteins. We also
noted no significant difference in entropy between pancreatic cancer and normal samples, sug-
gesting that despite much evidence of a more embryonic state for cancer cells, a change to
greater entropy did not exist for isomiRs [32].

Reporting miRNA RNA-seq data
One continuing question in RNA-seq is how to report on discovered miRNAs. It is generally
thought that the presence of a single miRNA read out of 1+ million reads is likely of no func-
tional significance. Mullokandov et al. suggested that a miRNA should be at a minimum of 100
RPM for functionality and that 80% of miRNAs over 1000 RPM were functional [33]. While
not ideal, we support normalizing the data in RPM. We further believe that a RPM threshold
of 10 RPM for reporting will identify all functional miRNAs while removing many inconse-
quential reads. To consistently detect miRNAs with a threshold of 10 RPM, the depth of a
sequencing run need not be more than 3 million reads. This is a significant advantage when
multiplexing samples together for cost effectiveness [34]. Recently, the miRQC consortium
showed how miRNA discovery continues to increase as RNA-seq depth increases into the tens
of millions of reads [23]. However, this report clearly includes singleton reads, which would
increase, but are likely biologically irrelevant and, in the setting of tissue, may be a blood-based
miRNA “passing through.”[7].

miRge limitations
There are certain limitations to miRge. The current version of miRge does not attempt to per-
form any novel miRNA discovery. It should be noted, however, that the residual reads file can
be used in other programs (ex. RNAfold) for that purpose [35]. The miRge algorithm and the
sequence libraries provided were developed for human, mouse, rat, nematode, fruitfly and zeb-
rafish datasets, but miRge can be used in any species in which the four sequence libraries uti-
lized in the miRge workflow can be constructed. There is no limitation to individual users
developing their own optimal datasets for a species of interest, as long as the miRBase miRNA
coverage is adequate for that species. Finally, we, like others, have not yet solved the problem of
assigning reads that can map equally to two miRNAs. We currently combine near identical
miRNA species in our final reporting, which is also customizable via a simple comma separated
text file. It will require in vitro experimental methods to determine the proper ratios of the
miRNA sequences based on known differences between miRNAs and their independent iso-
miR ratios.
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Conclusion
We have created miRge, a new small RNA RNA-seq alignment program to rapidly and accu-
rately determine the miRNA content of RNA-seq data and provide novel miRNA entropy
measures.
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Further changes in entropy measures by removing reads with 2 or 3 counts are negligible.
These data are independent of the total number of miRNA reads in a sample between 1 million
and 26 million (not shown).
(PDF)
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miRNAs were either inverted versions of known miRNAs or identical sequences of known
miRNAs.
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